

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE COORDENADORIA ESPECIAL DE FÍSICA, QUÍMICA E MATEMÁTICA

PLANO DE ENSINO

SEMESTRE 2024.2

IDENTIFICA	ÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-A TEÓRICAS	ULA SEMANAIS PRÁTICAS	TOTAL DE HORAS-AULA SEMESTRAIS
	Termodinâmica e Mecânica Estatística		4	60

	HORÁRIO	MODALIDADE	brack
TURMAS TEÓRICAS	TURMAS PRÁTICAS		Ē
Sábado - 08h20 às 12h		Presencial]

PROFESSOR MINISTRANTE

Agenor Hentz da Silva Junior (e-mail: agenor.hentz@ufsc.br)

OBJETIVOS

Objetivos Gerais:

- Qualificar o aluno de pós-graduação na compreensão de fenômenos físicos relacionados à Termodinâmica por intermédio da Física Estatística, bem como introduzir as noções básicas do formalismo da Mecânica Estatística.
- Aprimorar no profissional em ensino de Física seus métodos de transposição didática bem como suas habilidades em demonstrar por meio de experimentos e objetos de aprendizagem a Termodinâmica e a Física Estatística focadas no contexto cotidiano.

Objetivos Específicos:

- Utilizar linguagem específica na expressão de conceitos físicos ligados à Termodinâmica e Física Estatística.
- Discutir as leis da termodinâmica e suas implicações nas máquinas térmicas.
- Compreender os conceitos de microestados, macroestados e ensemble e suas implicações no estudo de sistemas em equilíbrio térmico.
- Entender a conexão entre as leis da probabilidade e da mecânica (clássica e quântica) no estudo de sistemas termodinâmicos.
- Explorar maneiras e métodos alternativos para a abordagem de temas ligados à Termodinâmica e Física Estatística.
- Discutir a utilização de experimentos simples de demonstração em sala de aula.
- Explorar os recursos educacionais digitais disponíveis para o ensino dos temas citados focalizando nas simulações em computador.

- Criar um senso crítico sobre a utilização de recursos disponibilizados na Internet.
- Identificar, propor e resolver problemas dos temas citados.
- Reconhecer as relações de desenvolvimento da Física com outras áreas do saber, tecnologia e instâncias sociais.
- Desenvolver a capacidade em transmitir conhecimento expressando-se de forma clara e consistente na divulgação dos resultados científicos.

CONTEÚDO PROGRAMÁTICO

A natureza temporal e espacial das medidas termodinâmicas; Energia interna; Equilíbrio termodinâmico; Definição quantitativa de calor; Problema básico da termodinâmica; Postulado do máximo da entropia; Parâmetros intensivos e equações de estado; Conceito de temperatura; Equilíbrio químico, mecânico e em relação ao fluxo de matéria; Calor específico molar; Processos termodinâmicos possíveis e impossíveis; Processos quase-estáticos e reversíveis; Teorema do máximo trabalho; Coeficientes de performance; Ciclo de Carnot; Máquinas Térmicas; Princípio da mínima energia; Caminhante aleatório; Valores médios e desvios padrão; Estados microscópicos em sistemas clássicos e quânticos; Hipótese ergódica e o postulado fundamental de mecânica estatística; Ensemble microcanônico; Gás ideal clássico no ensemble microcanônico; Ensemble canônico; Paramagneto ideal; Sólido de Einstein; Gás de Boltzmann; Gás clássico no ensemble canônico; Ensemble Grande-Canônico e ensemble das pressões; Sistemas quânticos. (férmions e bósons ideais; gás de fótons; metais e semicondutores; condensação de Bose-Einstein); Modelo de Ising; Gás de van der Waals; Flutuações e movimento browniano.

AVALIAÇÕES

As avaliações consistirão em listas de exercícios, provas escritas individuais e trabalhos individuais e em grupo de compreendem: elaboração de resenhas e de textos didáticos, construção de experimento simples de demonstração, pesquisa e avaliação de objetos de aprendizagem disponíveis na Internet. As provas escritas serão individuais e baseadas nas listas de exercícios propostas. Os pesos de cada atividade serão: Provas Escritas: 30%, Listas de Exercícios: 40%, Trabalhos: 30%.

CRONOGRAMA		
AULA (semana)	DATA	ASSUNTO
1	17/08	Apresentação da disciplina, O problema e os postulados.
2	24/08	Condições de Equilíbrio.
3	31/08	Alguns sistemas simples.
4	07/09	Feriado
5	14/09	Processos Reversíveis.
6	21/09	Formulações Alternativas e Transformações de Legendre
7	28/09	Princípios de Extremo na formulação da Transformação de Legendre
8	05/10	Relações de Maxwell
9	12/10	Feriado
10	19/10	Introdução aos Métodos Estatísticos. Ensemble Canônico
11	26/10	Ensemble Microcanônico
12	02/11	Feriado
13	09/11	Ensemble Grande canônico
14	16/11	Dia não letivo
15	23/11	Gás Clássico

Feriados previstos para o semestre 2024.2:

DATA	
07/09	Independência do Brasil
12/10	Padroeira do Brasil
02/11	Finados
15/11	Proclamação da República
16/11	Dia não letivo

XIII. BIBLIOGRAFIA

Bibliografia Básica:

CALLEN, Herbert B., Thermodynamics and an Introduction to Thermostatistics, Wiley, New York, 1985, segunda edição (capítulos 1 a 3, 5-1 e 5-2, 6-1 a 6-4).

OLIVEIRA, M. J., Termodinâmica, Editora Livraria da Física, São Paulo, 2012, 2a. edição (capítulos 1 a 4).

SALINAS S. R. A., Introdução a Física Estatística, EDUSP, São Paulo, 2005, 2a. impressão (capítulo 1 a 10; 16-1 a 16-3).

SALINAS S. R. A., Física Térmica: Versão preliminar (2014).

Bibliografia de consulta:

BAIERLEIN, Ralph, Thermal Physics, Cambridge U. P., 1999.

DILL, Ken A.; BROMBERG, S., Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology, Garland Science, New York, 2003.

GOLD, Harvey; JAN TOBOCHNIK, Jan. Statistical and Thermal Physics - with computer applications, Princeton U, P,, Princeton, 2010.

SCHROEDER, Daniel V. An Introduction to Thermal Physics, Addison-Wesley Longman, 1999.

SWENDSEN, Robert H. An Introduction to Statistical Mechanics and Thermodynamics Oxford U.P., (2012).

Prof. Agenor Hentz da Silva Junior